Electroelastic coupling between membrane surface fluctuations and membrane-embedded charges: continuum multidielectric treatment.
نویسندگان
چکیده
The coupling of electric fields and charges with membrane-water interfacial fluctuations affects membrane electroporation, ionic conductance, and voltage gating. A modified continuum model is introduced to study charge interaction with membrane-water interfacial fluctuations in multidielectric environments. By surrounding a point charge with a low dielectric sphere, the linear Poisson-Boltzmann equation is directly solved by calculating the reaction field potential via a method that eliminates singularity contributions. This allows treatment of charges located at dielectric boundaries. Two complementary mechanisms governing charge-fluctuation interactions are considered: (1) electroelastic deformation (EED), treating the membrane as an elastic slab (smectic bilayer model), and (2) electrohydrophobic solvation (EHS), accounting for water penetration into the membrane's hydrophobic core. EED often leads to large membrane thickness perturbations, far larger than those consistent with elastic model descriptions [M. B. Partenskii, G. V. Miloshevsky, and P. C. Jordan, Isr. J. Chem. 47, 385 (2007)]. We argue that a switch from EED to EHS can be energetically advantageous at intermediate perturbation amplitudes. Both perturbation mechanisms are simulated by introducing adjustable shapes optimized by the kinetic Monte Carlo reaction path following approach [G. V. Miloshevsky and P. C. Jordan, J. Chem. Phys. 122, 214901 (2005)]. The resulting energy profiles agree with those of recent atomistic molecular dynamics studies on translating a charged residue across a lipid bilayer [S. Dorairaj and T. W. Allen, Proc. Natl. Acad. Sci. U.S.A. 104, 4943 (2007)].
منابع مشابه
Zwitterion Embedded Thin Film Composite Membrane for Oily Wastewater Treatment
The recent development in oil and gas industry increases the production and consumption of oil. The enormous amount of oily wastewater produced is urged to be treated to prevent humanity and environment from being threatened. Membrane technology is an appealing alternative for oily wastewater treatment due to its design simplicity, energy efficiency and environmentally benign approach. In this ...
متن کاملThe Advances of Electrospun Nanofibers in Membrane Technology
Electrospinning is a simple and versatile technique that relies on the electrostatic repulsion between surface charges to continuously draw nanofibers from a viscoelastic fluid. Electrospinning can generate nanofibers with a number of secondary structures. Surface and/or interior of nanofibers can be functionalized with molecular species or nanoparticles during or after an electrospinning proce...
متن کاملDifference between efficiency of ultrasound treatments above and below the membrane surface in membrane clarification of pomegranate juice
Microfiltration can clarify pomegranate juice; however, fouling is a limiting phenomenon in the process. In current work ultrasound was applied above and below the membrane surface to reduce fouling after removing temperature effect. A hydrophilic mixed cellulose ester membrane with pore size of 0.45 μm was used in lab scale flat sheet module. Membrane module was placed above and below the ultr...
متن کاملDifference between efficiency of ultrasound treatments above and below the membrane surface in membrane clarification of pomegranate juice
Microfiltration can clarify pomegranate juice; however, fouling is a limiting phenomenon in the process. In current work ultrasound was applied above and below the membrane surface to reduce fouling after removing temperature effect. A hydrophilic mixed cellulose ester membrane with pore size of 0.45 μm was used in lab scale flat sheet module. Membrane module was placed above and below the ultr...
متن کاملModelling Meso-Scale Diffusion Processes in Stochastic Fluid Bio-membranes
The space-time dynamics of rigid inhomogeneities (inclusions) free to move in a randomly fluctuating fluid bio-membrane is derived and numerically simulated as a function of the membrane shape changes. Both vertically placed (embedded) inclusions and horizontally placed (surface) inclusions are considered. The energetics of the membrane, as a two-dimensional (2D) meso-scale continuum sheet, is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 132 23 شماره
صفحات -
تاریخ انتشار 2010